Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 569
Filtrar
1.
Langmuir ; 40(16): 8373-8392, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38606767

RESUMO

Amorphous calcium carbonate (ACC) is an important precursor phase for the formation of aragonite crystals in the shells of Pinctada fucata. To identify the ACC-binding protein in the inner aragonite layer of the shell, extracts from the shell were used in the ACC-binding experiments. Semiquantitative analyses using liquid chromatography-mass spectrometry revealed that paramyosin was strongly associated with ACC in the shell. We discovered that paramyosin, a major component of the adductor muscle, was included in the myostracum, which is the microstructure of the shell attached to the adductor muscle. Purified paramyosin accumulates calcium carbonate and induces the prism structure of aragonite crystals, which is related to the morphology of prism aragonite crystals in the myostracum. Nuclear magnetic resonance measurements revealed that the Glu-rich region was bound to ACC. Activity of the Glu-rich region was stronger than that of the Asp-rich region. These results suggest that paramyosin in the adductor muscle is involved in the formation of aragonite prisms in the myostracum.


Assuntos
Exoesqueleto , Carbonato de Cálcio , Pinctada , Tropomiosina , Animais , Pinctada/química , Pinctada/metabolismo , Carbonato de Cálcio/química , Carbonato de Cálcio/metabolismo , Exoesqueleto/química , Exoesqueleto/metabolismo , Tropomiosina/química , Tropomiosina/metabolismo
2.
Int J Biol Macromol ; 256(Pt 2): 128462, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38042317

RESUMO

Chitin extraction from the shells of American lobsters (Homarus americanus) was optimized through the use of response surface methodology (RSM). The demineralization step was optimized to minimize the ash content of shell samples and the deproteination step was optimized to minimize the protein content of the chitin product. At a laboratory scale, one set of optimized conditions for the demineralization step was 7.35 % w/w acetic acid at a 40 mL/g of powdered lobster shell ratio for 15 min; this lowered the ash content from 39.62 % to 0.41 ± 0.08 %. A set of optimized conditions for the deproteination step at a similar scale was 4 % w/w sodium hydroxide at a 43 mL/g demineralized shell ratio heated to 95 °C for 83 min. These conditions were indicated to entirely remove protein from the resultant chitin. Average yields under optimized conditions were 23.43 ± 1.75 % for demineralization and 30.33 ± 0.02 % for deproteination, though a demineralization reaction with larger biomass input had a higher yield at 40.31 %.


Assuntos
Quitina , Decápodes , Animais , Quitina/química , Nephropidae , Decápodes/química , Exoesqueleto/química
3.
Int J Biol Macromol ; 253(Pt 4): 126956, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37739291

RESUMO

Pinctada fucata is an important pearl production shellfish in aquaculture. The formation of shells and pearls is a hot research topic in biomineralization, and matrix proteins secreted by the mantle tissues play the key role in this process. However, upstream regulatory mechanisms of transcription factors on the matrix protein genes remain unclear. Previous studies have shown that NF-κB signaling pathway regulated biomineralization process through expression regulation of specific matrix proteins, including Nacrein, Prismalin-14 and MSI60. In this study, we systematically investigated the regulatory effect of the NF-κB signaling pathway key factor Pf-Rel and inhibitory protein poI-κB on the biomineralization and shell regeneration process. We applied RNA interference and antibody injection assays to study in vivo function of transcription factor Pf-Rel and characterized shell morphology changes using scanning electron microscopy and Raman spectroscopy. We found that transcription factor Pf-Rel plays a positive regulatory role in the growth regulation of the prismatic and nacreous layers, while the function of inhibitory protein poI-κB is to prevent excessive growth and accumulation of both layers. RNA-seq was conducted based on RNA interference animal model to identify potential regulatory genes by transcription factor Pf-Rel. Shell damage repair experiments were performed to simulate shell regeneration process, and observations of newly formed shells revealed that NF-κB signaling pathway had different functions at different times. This study provides us with a more macroscopic perspective based on transcription factors to investigate biomineralization and shell regeneration.


Assuntos
NF-kappa B , Pinctada , Animais , NF-kappa B/metabolismo , Biomineralização , Pinctada/química , Transdução de Sinais , Regulação da Expressão Gênica , Exoesqueleto/química
4.
Adv Mater ; 35(39): e2304166, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37450944

RESUMO

The shells of the Pinnidae family are based on a double layer of single-crystal-like calcitic prisms and inner aragonitic nacre, a structure known for its outstanding mechanical performance. However, on the posterior side, shells are missing the nacreous layer, which raises the question of whether there can be any functional role in giving up this mechanical performance. Here, it is demonstrated that the prismatic part of the Pinna nobilis shell exhibits unusual optical properties, whereby each prism acts as an individual optical fiber guiding the ambient light to the inner shell cavity by total internal reflection. This pixelated light channeling enhances both spatial resolution and contrast while reducing angular blurring, an apt combination for acute tracking of a moving object. These findings offer insights into the evolutionary aspects of light-sensing and imaging and demonstrate how an architectured optical system for efficient light-tracking can be based on birefringent ceramics.


Assuntos
Bivalves , Nácar , Animais , Carbonato de Cálcio/química , Exoesqueleto/química , Bivalves/química , Nácar/química , Evolução Biológica
5.
Int J Biol Macromol ; 246: 125563, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37364812

RESUMO

Recently, chitin biopolymer has received much attention as a wide variety of biomedical application for this and its derivatives have been reported, in fact, the study of non-conventional species as alternative sources of them compounds has taken particular interest. Here, we present a comparative physicochemical survey of the two tagmata in the exoskeleton of the horseshoe crab Limulus polyphemus: the prosoma and the opisthosoma, collected in Yucatán, Mexico. The characterization included CHNSO analysis, FTIR, TGA, DSC, XRD, and SEM. The CHNSO analysis revealed that C is present in the highest proportion (∼45 %) and that chemical composition did not show significant differences (P < 0.05) between the two tagmata. FTIR spectra of two tagmata presented a wide characteristic band of the chitin between 3600 and 3000 cm-1, confirming the presence of this biopolymer in the exoskeleton studied. TGA and DTGA profiles resulted very similar for both tagmata being the residual mass at 650 °C of around 30 % for both samples; these values were associated to the presence of minerals. SEM micrographs showed a porous matrix with infinite large number of irregularly shaped particles. Results show that both tagmata are made up of chitin, and they seem to have a high mineral content.


Assuntos
Exoesqueleto , Quitina , Caranguejos Ferradura , Caranguejos Ferradura/química , Animais , Exoesqueleto/química , Exoesqueleto/ultraestrutura , Microscopia Eletrônica de Varredura , Quitina/química
6.
Molecules ; 28(9)2023 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-37175306

RESUMO

Natural astaxanthin has been widely used in the food, cosmetic, and medicine industries due to its exceptional biological activity. Shrimp shell is one of the primary natural biological sources of astaxanthin. However, after astaxanthin recovery, there is still a lot of chitin contained in the residues. In this study, the residue from shrimp (Penaeus vannamei) shells after astaxanthin extraction using ionic liquid (IL) 1-ethyl-3-methyl-imidazolium acetate ([Emim]Ac) was used as a bioadsorbent to remove fluoride from the aqueous solution. The results show the IL extraction conditions, including the solid/liquid ratio, temperature, time, and particle size, all played important roles in the removal of fluoride by the shrimp shell residue. The shrimp shells treated using [Emim]Ac at 100 °C for 2 h exhibited an obvious porous structure, and the porosity showed a positive linear correlation with defluorination (DF, %). Moreover, the adsorption process of fluoride was nonspontaneous and endothermic, which fits well with both the pseudo-second-order and Langmuir models. The maximum adsorption capacity calculated according to the Langmuir model is 3.29 mg/g, which is better than most bioadsorbents. This study provides a low-cost and efficient method for the preparation of adsorbents from shrimp processing waste to remove fluoride from wastewater.


Assuntos
Adsorção , Exoesqueleto , Fluoretos , Penaeidae , Poluentes Químicos da Água , Água , Xantofilas , Animais , Exoesqueleto/química , Quitina/análise , Quitina/química , Fluoretos/química , Fluoretos/isolamento & purificação , Concentração de Íons de Hidrogênio , Líquidos Iônicos/química , Cinética , Tamanho da Partícula , Penaeidae/química , Porosidade , Alimentos Marinhos , Soluções/química , Temperatura , Águas Residuárias/química , Água/química , Poluentes Químicos da Água/química , Poluentes Químicos da Água/isolamento & purificação , Xantofilas/isolamento & purificação
7.
Bull Environ Contam Toxicol ; 110(6): 99, 2023 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-37243788

RESUMO

Scutes present very complex morphologies with different growth rates at different areas of the carapace that can change the accumulation process of essential and non-essential metals. To infer the effects of morphology and growth on Hg concentrations in scutes, we mapped them in the carapace of one individual of four species of sea turtles sampled along the Brazilian coast. The results showed that Hg concentrations were higher in the vertebral scutes of Chelonia mydas and Eretmochelys imbricata suggesting variation in growth rates of different carapace areas since the vertebral area is the first to develop prior to costal areas. Caretta caretta and Lepidochelys olivacea did not show differences between carapace areas. The preliminary data from this pilot study indicate that vertebral scutes may be suitable for monitoring Hg in C. mydas and E. imbricata, since they reflect longer exposure period. A species-to-species comparison of Hg concentrations is not possible due to the small number of sampled individuals, nevertheless, E. imbricata showed remarkably lower Hg concentrations compared to the other three species. Further studies are required for all four species, with a larger number of individuals, preferentially of varying life stages, due to the unknown effects of different diets, Hg exposure, and migration histories.


Assuntos
Mercúrio , Tartarugas , Animais , Mercúrio/análise , Brasil , Projetos Piloto , Exoesqueleto/química
8.
Adv Mater ; 35(28): e2300373, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36864010

RESUMO

Biominerals are organic-mineral composites formed by living organisms. They are the hardest and toughest tissues in those organisms, are often polycrystalline, and their mesostructure (which includes nano- and microscale crystallite size, shape, arrangement, and orientation) can vary dramatically. Marine biominerals may be aragonite, vaterite, or calcite, all calcium carbonate (CaCO3 ) polymorphs, differing in crystal structure. Unexpectedly, diverse CaCO3 biominerals such as coral skeletons and nacre share a similar characteristic: Adjacent crystals are slightly misoriented. This observation is documented quantitatively at the micro- and nanoscales, using polarization-dependent imaging contrast mapping (PIC mapping), and the slight misorientations are consistently between 1° and 40°. Nanoindentation shows that both polycrystalline biominerals and abiotic synthetic spherulites are tougher than single-crystalline geologic aragonite. Molecular dynamics (MD) simulations of bicrystals at the molecular scale reveal that aragonite, vaterite, and calcite exhibit toughness maxima when the bicrystals are misoriented by 10°, 20°, and 30°, respectively, demonstrating that slight misorientation alone can increase fracture toughness. Slight-misorientation-toughening can be harnessed for synthesis of bioinspired materials that only require one material, are not limited to specific top-down architecture, and are easily achieved by self-assembly of organic molecules (e.g., aspirin, chocolate), polymers, metals, and ceramics well beyond biominerals.


Assuntos
Antozoários , Nácar , Animais , Exoesqueleto/química , Carbonato de Cálcio/química , Minerais/química , Nácar/química
9.
Mar Environ Res ; 186: 105925, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36857940

RESUMO

Molluscs are among the organisms affected by ocean acidification (OA), relying on carbon for shell biomineralization. Metabolic and environmental sourcing are two pathways potentially affected by OA, but the circumstances and patterns by which they are altered are poorly understood. From previous studies, mollusc shells grown under OA appear smaller in size, brittle and thinner, suggesting an important alteration in carbon sequestration. However, supplementary feeding experiments have shown promising results in offsetting the negative consequences of OA on shell growth. Our study compared carbon uptake by δ13C tracing and deposition into mantle tissue and shell layers in Magallana gigas and Mytilus species, two economically valuable and common species. After subjecting the species to 7.7 pH, +2 °C seawater, and enhanced feeding, both species maintain shell growth and metabolic pathways under OA without benefitting from extra feeding, thus, showing effective acclimation to rapid and short-term environmental change. Mytilus spp. increases metabolic carbon into the calcite and environmental sourcing of carbon into the shell aragonite in low pH and high temperature conditions. Low pH affects M. gigas mantle nitrogen isotopes maintaining growth. Calcite biomineralization pathway differs between the two species and suggests species-specific response to OA.


Assuntos
Mytilus , Ostreidae , Animais , Biomineralização , Água do Mar/química , Concentração de Íons de Hidrogênio , Acidificação dos Oceanos , Carbonato de Cálcio/metabolismo , Carbono/metabolismo , Dióxido de Carbono/análise , Exoesqueleto/química
10.
Proc Biol Sci ; 290(1991): 20221216, 2023 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-36651043

RESUMO

Biomineralization is one of the key biochemical processes in calcifying bivalve species such as oysters that is affected by ocean acidification (OA). Larval life stages of oysters are made of aragonite crystals whereas the adults are made of calcite and/or aragonite. Though both calcite and aragonite are crystal polymorphs of calcium carbonate, they have different mechanical properties and hence it is important to study the micro and nano structure of different life stages of oyster shells under OA to understand the mechanisms by which OA affects biomineralization ontogeny. Here, we have studied the larval and juvenile life stages of an economically and ecologically important estuarine oyster species, Crassostrea hongkongensis, under OA with focus over shell fabrication under OA (pHNBS 7.4). We also look at the effect of parental exposure to OA on larvae and juvenile microstructure. The micro and nanostructure characterization reveals directional fabrication of oyster shells, with more organized structure as biomineralization progresses. Under OA, both the larval and juvenile stages show directional dissolution, i.e. the earlier formed shell layers undergo dissolution at first, owing to longer exposure time. Despite dissolution, the micro and nanostructure of the shell remains unaffected under OA, irrespective of parental exposure history.


Assuntos
Crassostrea , Água do Mar , Animais , Água do Mar/química , Larva , Concentração de Íons de Hidrogênio , Acidificação dos Oceanos , Solubilidade , Exoesqueleto/química , Carbonato de Cálcio/análise , Dióxido de Carbono/análise
11.
ACS Biomater Sci Eng ; 9(7): 3843-3859, 2023 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-35959691

RESUMO

Interfaces between nacreous tablets are crucial to the outstanding mechanical properties of nacre in natural shells. Excellent research has been conducted to probe the effect of interfaces on strength and toughness of nacre, providing critical guidelines for the design of human-made laminated composites. This article reviews recent studies on interfacial mechanical behavior of nacre in red abalone and other shells, including experimental methods, analytical and numerical modeling. The discussions focus on the mechanical properties of dry and hydrated nacreous microstructures. The review concludes with discussions on representative studies of nacre-like composites with interfaces tuned using multiple approaches, and provides an outlook on improving the performance of composites with better interfacial controls.


Assuntos
Exoesqueleto , Nácar , Nácar/química , Gastrópodes , Exoesqueleto/química
12.
Chemosphere ; 307(Pt 2): 135926, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35934096

RESUMO

Morphological, structural and compositional alterations in shells of molluscs have been proposed as putative biomarkers of chemical contamination in coastal zones. Despite this, few studies were carried out using top predator gastropods which tend to be more susceptible to contamination exposure. Thus, the present study assessed disturbances on shells of Stramonita brasiliensis considering compression resistance and organic and mineralogical matrix composition, related to morphometric alterations. Results showed reductions in compression resistance and organic matrix content associated with higher contaminated sites. In addition, a predominance of calcite polymorphs was seen in shells obtained in polluted areas. Such outputs were consistent with local contamination levels which may have induced the observed alterations. Thus, changes in mollusc shells showed good performance as potential biomarkers of coastal contamination, being probably observed in other species of carnivorous gastropods around the world.


Assuntos
Gastrópodes , Exoesqueleto/química , Animais , Biomarcadores/análise , Carbonato de Cálcio/análise , Moluscos
13.
Sci Rep ; 12(1): 11034, 2022 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-35773289

RESUMO

Giant clams produce massive calcified shells with important biological (e.g., defensive) and ecological (e.g., habitat-forming) properties. Whereas elevated seawater temperature is known to alter giant clam shell structure, no study has examined the effects of a simultaneous increase in seawater temperature and partial pressure of carbon dioxide (pCO2) on shell mineralogical composition in these species. We investigated the effects of 60-days exposure to end-of-the-century projections for seawater temperature (+ 3 °C) and pCO2 (+ 500 µatm) on growth, mineralogy, and organic content of shells and scutes in juvenile Tridacna squamosa giant clams. Elevated temperature had no effect on growth rates or organic content, but did increase shell [24Mg]/[40Ca] as well as [40Ca] in newly-formed scutes. Elevated pCO2 increased shell growth and whole animal mass gain. In addition, we report the first evidence of an effect of elevated pCO2 on element/Ca ratios in giant clam shells, with significantly increased [137Ba]/[40Ca] in newly-formed shells. Simultaneous exposure to both drivers greatly increased inter-individual variation in mineral concentrations and resulted in reduced shell N-content which may signal the onset of physiological stress. Overall, our results indicate a greater influence of pCO2 on shell mineralogy in giant clams than previously recognized.


Assuntos
Bivalves , Cardiidae , Exoesqueleto/química , Animais , Bivalves/fisiologia , Dióxido de Carbono/análise , Água do Mar/química , Temperatura
14.
Sci Rep ; 12(1): 9655, 2022 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-35688923

RESUMO

Nowadays, the presence of excessive ions in water resources is of utmost concern and has attracted increasing attention; therefore, excessive amounts of these ions such as fluoride should be removed from drinking water. Conventional water treatment processes are shown to be incapable of the complete removal of redundant fluoride from aqueous water bodies, whereas adsorption is a promising, effective, cost-benefit, and simple method for this purpose. This study aimed to synthesize effective adsorbents from bivalve shells and evaluate the adsorption function of bivalve shells in removing fluoride from aqueous solutions. In this study, the oyster shell was collected from the Persian Gulf's seaside and were crushed by manual mortar and blender, and graded with standard sieves with 70 mesh size. The prepared bivalve shell was characterized by SEM and FTIR. To investigate and optimize various variables on fluoride removal percentage a response surface methodology based on central composite design (RSM-CCD) was used. Under optimal conditions (pH: 5.5, adsorbent dose: 0.3 g/L, contact time: 85 min and fluoride concentration: 3 mg/L) the maximum removal efficiency was 97.26%. Results showed that the adsorption equilibrium and kinetic data were matched with the isotherm Langmuir Model (R2 = 0.98) with qmax = 27.31 mg/g and pseudo-second-order reaction (R2 = 0.99). Also, a thermodynamic study exhibited that the adsorption process of fluoride into bivalve shells was an exothermic reaction and could not be a spontaneous adsorption process. Based on the results, the bivalve shell was found as an appropriate adsorbent to remove fluoride from aqueous solutions.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Adsorção , Exoesqueleto/química , Animais , Fluoretos , Concentração de Íons de Hidrogênio , Cinética , Termodinâmica , Poluentes Químicos da Água/análise , Purificação da Água/métodos
15.
Ultrason Sonochem ; 88: 106066, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35724485

RESUMO

The objective of this study is to explore the effect and mechanism of ultrasound on chitin extraction from shrimp shells powder (SSP) by the co-fermentation of Bacillus subtilis and Acetobacter pasteurianus. After pre-treating the SSP with high-intensity ultrasound (HIU) at 800 W, the protease activity in the fermentation solution reached 96.9 U/mL on day 3, which was significantly higher than for SSP that had not been pre-treated with ultrasound (81.8 U/mL). The fermentation time of the chitin extraction process was 5.0 d without ultrasound pre-treatment, while it was shortened to 4.5 d when using ultrasound at 800 W to treat SSP. However, there were no obvious differences when we applied ultrasound at low power (200 W, 400 W). Furthermore, chitin purified from shrimp shells pre-treated with HIU at 800 W exhibited lower molecular weight (11.2 kDa), higher chitin purity (89.8%), and a higher degree of deacetylation (21.1%) compared to SSP with no ultrasound pre-treatment (13.5 kDa, 86.6%, 18.5%). Results indicate that HIU peels off the protein/CaCO3 matrix that covers the SSP surface. About 9.1% of protein and 4.7% of Ca2+ were released from SSP pre-treated with HIU at 800 W. These figures were both higher than with no ultrasound pre-treatment (4.5%, 3.2%). Additionally, the amount of soluble protein extracted from SSP through HIU at 800 W was 50% higher than for the control sample. SDS-PAGE analysis indicated that the soluble protein was degraded to the micromolecule. It also revealed that HIU (600, 800 W) induced the secondary and tertiary structure destruction of protein extracted from SSP. In conclusion, HIU-induced degradation and structural damage of protein enhances the protein/CaCO3 matrix to be peeled off from SSP. Also, in the co-fermentation process, an increase of protease activity further accelerates deproteinization.


Assuntos
Exoesqueleto , Quitina , Exoesqueleto/química , Animais , Bacillus subtilis/metabolismo , Quitina/química , Fermentação , Peptídeo Hidrolases/metabolismo , Pós/análise , Pós/metabolismo , Proteínas/análise
16.
ACS Biomater Sci Eng ; 8(3): 1143-1155, 2022 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-35239310

RESUMO

As biological ceramic composites, mollusk shells exhibit an excellent strength-toughness combination that should be dependent on aragonite/organic matrix interfaces. The mechanical properties and fracture mechanisms of the nacreous structure in the Cristaria plicata (C. plicata) shell and crossed-lamellar structures in the Cymbiola nobilis (C. nobilis) shell were investigated, focusing on the critical role of the organic matrix/aragonite interface bonding that can be adjusted by heat treatments. It is found that heat treatments have a negative impact on the fracture behavior of the nacreous structure in the C. plicata shell, and both the bending and shear properties decrease with increasing heat-treatment temperature because of the loss of water and organic matrix. In contrast, for the crossed-lamellar structure in C. nobilis shell, the water loss in heat treatment slightly decreases its bending properties. When the organic matrix is melted after an appropriate heat treatment at 300°C for 15 min, its bending properties can be greatly enhanced; in this case, remarkable toughening mechanisms involving crack deflection and the fiber pull-out are exhibited, although the interfacial bonding strength reduces. Therefore, an appropriate heat treatment would bring about a positive impact on the fracture behavior of crossed-lamellar structure in the C. nobilis shell. The major research findings have provided an important inspiration that the inducement of moderately weak interfaces rather than all strong interfaces might enhance the comprehensive mechanical properties of fiber-reinforced ceramic composites.


Assuntos
Nácar , Exoesqueleto/química , Animais , Carbonato de Cálcio/análise , Temperatura Alta , Nácar/análise , Água/análise
17.
Gene ; 823: 146367, 2022 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-35202732

RESUMO

To understand the molecular responses of Pinctada fucata with different shell colors to salinity stress, we used transcriptome sequencing on the mantle of P. fucata with a black shell and red shell color under the salinity of 20, 35, and 50. The 414 and 2371 differentially expressed genes (DEGs) in P. fucata with a black shell under low- or high-salt stress, while there were 588 and 3009 DEGs in P. fucata with a red shell. KEGG pathway enrichment analysis showed that, under low salt stress, the DEGs of P. fucata with the black shell were significantly enriched in pathways MAPK signaling pathway, protein processing in endoplasmic reticulum, vitamin B6 metabolism, longevity regulating pathway-multiple species, estrogen signaling pathway and antigen processing and presentation, the DEGs of P. fucata with a red shell were significantly enriched in pathways vitamin B6 metabolism. Under high salt stress, the DEGs of P. fucata with a red shell were significantly enriched in pathways arginine biosynthesis. 11 DEGs were randomly selected for quantitative real-time PCR, and the results were consistent with the RNA-seq. In addition, under high salt stress, DEGs were enriched into some pathways related to osmotic regulation and immune defense of P. fucata with black shell and red shell, such as Glycolysis / Gluconeogenesis, AMPK signaling pathway, Beta-Alanine metabolism, Glycine, serine and threonine metabolism, MAPK signaling pathway and Phagosome. The study showed that high salt stress had a greater influence on P. fucata with two shell colors, and P. fucata with a black shell made a positive immune defense response. Our results will improve to further understand the salt tolerance mechanism of P. fucata with different shell colors.


Assuntos
Perfilação da Expressão Gênica/veterinária , Redes Reguladoras de Genes , Pinctada/anatomia & histologia , Exoesqueleto/anatomia & histologia , Exoesqueleto/química , Animais , Cor , Regulação da Expressão Gênica , Pinctada/genética , RNA-Seq , Estresse Salino
18.
Environ Sci Pollut Res Int ; 29(19): 28725-28742, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34988807

RESUMO

In the present study, we applied Fourier transform infrared (FTIR) and Fourier transform near infrared (FTNIR) spectroscopy to investigate some specific structural aspects of Patella caerulea, Mytilus edulis, Ostrea edulis, and Calista chione shells sampled in different sites. Moreover, for Ostrea edulis and Calista chione, the present study also included fossil samples. As far as FTIR spectroscopy is concerned, the support of statistical and multivariate methods such as the average spectrum (AV), spectral deconvolution, and two-dimensional correlation analysis (2DCOS) allowed to detect structural differences existing within the same mollusc species as a function of the sites they come. These differences can be reasonably linked to the local environmental conditions, which affect the biomineralization pattern of shell formation and growth. These structural differences are related to the calcite, aragonite, Mg-calcite contents, and interactions, as presently observed for fresh and fossil shells. The application of 2DCOS and deconvolution to FTIR spectra also showed the role of the amorphous calcium carbonate (ACC) in the structural characterization of shells, then suggesting the use of a new parameter, the calcite and aragonite to ACC (CAACC) ratio, as a new measurement for the structural characterization of shells. At last, FTNIR spectroscopy allowed detecting the presence of α-helix and ß-sheet protein structures in the shells. The results of this study show that also FTIR and FTNIR spectroscopy are able to discern differences in structural characteristics of mollusc shells, a field of environmental studies where scanning electron microscopy and X-ray diffraction are the more widely used methods.


Assuntos
Fósseis , Mytilus edulis , Exoesqueleto/química , Animais , Carbonato de Cálcio/química , Mytilus edulis/química , Proteínas/análise , Espectroscopia de Infravermelho com Transformada de Fourier , Espectroscopia de Luz Próxima ao Infravermelho
19.
Int J Biol Macromol ; 196: 35-45, 2022 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-34920076

RESUMO

The exploitation of chitinous materials seems to be an infinite treasure. To this end, using shellfish waste as the sole carbon/nitrogen source solves environmental challenges while lowering microbial chitinase production costs. Bioconversion of shellfish chitin wastes such as shrimp shells has recently been investigated for the production of enzymes and bioactive materials in order to maximize the utilization of chitin-containing seafood processing wastes. In this study, the bioconversion of chitin to chitosan by Alcaligenes faecalis Alca F2018 revealed the highest chitin deacetylase (CDA) activity of 40.6 U/µg. The resulted low Km and high Vmax values explain the high affinity of the purified CDA to the p-nitroacetanilide substrate. CDA with a molecular weight of 66 KDa was purified from F2018 strain, with a 14.5% yield. FT-IR revealed distinct chitosan peaks and XRD revealed that chitosan samples had lower crystallinity than chitin. TGA analysis revealed that the recovered chitosan samples were more thermally stable. The deacetylation degree percentages of the produced chitosan are in the same range as that of the commercial chitosan, suggesting the promising potential of A. faecalis Alca F2018 to utilize shrimp shells in their raw form in the fermentation media based on its CDA enzyme activity.


Assuntos
Alcaligenes faecalis/metabolismo , Organismos Aquáticos , Biotecnologia , Biotransformação , Quitina/metabolismo , Quitosana/metabolismo , Crustáceos/química , Alcaligenes faecalis/classificação , Alcaligenes faecalis/genética , Exoesqueleto/química , Animais , Quitina/química , Quitosana/química , Egito , Fermentação , Estrutura Molecular , RNA Ribossômico 16S , Análise Espectral
20.
Int J Biol Macromol ; 194: 843-850, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34838575

RESUMO

The properties of chitin-based adsorbents varied among studies since they are influenced by different factors, such as the types of base and acid used to extract the chitin. Therefore, this works aimed to investigate the impact of four different acid solutions on the extraction and properties of chitin from shrimp shell waste, and to evaluate the adsorption performance of the obtained chitin on removing dye from an aqueous solution. The result showed that H2SO4, HCl, and HNO3 could remove high minerals from the shrimp shell, while the effect of CH3COOH was inferior. The Fourier Transform Infrared (FTIR) and X-ray diffraction (XRD) indicated that the extracted chitin was α-amorphous structure, regardless of the type of acid solution. However, the type of acid solution influenced the crystallinity index of the extracted chitin. The Scanning Electron Microscope (SEM) showed both fibrillar material and porous structures. In addition, the chitin extracted through demineralization using H2SO4 was more effective in removing RBBR dye from aqueous solution, followed by HCl, HNO3, and the last, CH3COOH treatment. The performances of chitin-based adsorbent could be attributed to the strength of acid solution used to remove mineral during the extraction process and the obtained pore structures.


Assuntos
Ácidos/química , Exoesqueleto/química , Quitina/química , Quitina/isolamento & purificação , Crustáceos/química , Soluções/química , Adsorção , Animais , Fracionamento Químico , Cinética , Análise Espectral , Resíduos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...